Asymptotic analysis of the perturbed Poisson-Boltzmann equation on unbounded domains

نویسندگان

  • Manjun Ma
  • Chunhua Ou
چکیده

The Poisson Boltzmann equation is a model that describes electrostatic interactions between molecules in ionic solutions. As the mathematical base for the Gouy Chapman double layer (interfacial) theory, it was first proposed by Gouy in 1910 and then complemented by Chapman in 1913. The equation is extraordinarily important in the fields of molecular dynamics and biophysics, because it can be used in modeling implicit solvation, an approximation of the effects of solvent on the structures and interactions of proteins, DNA, RNA, and other molecules in solutions of different ionic strength. It is often difficult to solve the Poisson Boltzmann equation for complex systems, but several computer programs have been created to solve it numerically. Recently there have been considerable investigations on the analysis and applications of this type of equations. In particular, the Poisson-Boltzmann equation can also be derived from the PoissonNernst-Planck system. In this talk, we study the existence, uniqueness and asymptotic expansions to perturbed Poisson Boltzmann equations on an unbounded domain. A shooting method is applied to prove the existence and uniqueness of the exact solution. As to the approximation to the regularly perturbed Poisson Boltzmann equation, we convert it into an integral equation and a uniformly convergent asymptotic expansion based on the iteration of successive approximations is provided with a rigorous proof. For the singularly perturbed problem, since the typical Poincaretype outer solution is the constant zero, we then use the inner-layer asymptotic formula to approximate the true solution in the whole domain. Our proof verifies that these expansions do give a valid approximation globally. A further discussion on the exponentially-matched asymptotic expansions is also presented. Coffee and cookies will be served. Seminar website: http://www.math.mun.ca/~shuz/seminars.html --------------All are welcome-------------------

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electrostatic analysis of the charged surface in a solution via the finite element method: The Poisson-Boltzmann theory

Electrostatic potential as well as the local volume charge density are computed for a macromolecule by solving the Poisson-Boltzmann equation (PBE) using the finite element method (FEM). As a verification, our numerical results for a one dimensional PBE, which corresponds to an infinite-length macromolecule, are compared with the existing analytical solution and good agreement is found. As a ma...

متن کامل

stability of the quadratic functional equation

In the present paper a solution of the generalizedquadratic functional equation$$f(kx+ y)+f(kx+sigma(y))=2k^{2}f(x)+2f(y),phantom{+} x,yin{E}$$ isgiven where $sigma$ is an involution of the normed space $E$ and$k$ is a fixed positive integer. Furthermore we investigate theHyers-Ulam-Rassias stability of the functional equation. TheHyers-Ulam stability on unbounded domains is also studied.Applic...

متن کامل

Adaptive multilevel finite element solution of the Poisson-Boltzmann equation II. Refinement at solvent-accessible surfaces in biomolecular systems

We apply the adaptive multilevel finite element techniques described in [20] to the nonlinear Poisson-Boltzmann equation (PBE) in the context of biomolecules. Fast and accurate numerical solution of the PBE in this setting is usually difficult to accomplish due to presence of discontinuous coefficients, delta functions, three spatial dimensions, unbounded domains, and rapid (exponential) nonlin...

متن کامل

Asymptotic Behavior of an Initial-Boundary Value Problem for the Vlasov-Poisson-Fokker-Planck System

The asymptotic behavior for the Vlasov–Poisson–Fokker–Planck system in bounded domains is analyzed in this paper. Boundary conditions defined by a scattering kernel are considered. It is proven that the distribution of particles tends for large time to a Maxwellian determined by the solution of the Poisson–Boltzmann equation with Dirichlet boundary condition. In the proof of the main result, th...

متن کامل

On the nature of solutions of the difference equation $mathbf{x_{n+1}=x_{n}x_{n-3}-1}$

We investigate the long-term behavior of solutions of the difference equation[ x_{n+1}=x_{n}x_{n-3}-1 ,, n=0 ,, 1 ,, ldots ,, ]noindent where the initial conditions $x_{-3} ,, x_{-2} ,, x_{-1} ,, x_{0}$ are real numbers.  In particular, we look at the periodicity and asymptotic periodicity of solutions, as well as the existence of unbounded solutions.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Asymptotic Analysis

دوره 91  شماره 

صفحات  -

تاریخ انتشار 2015